.
-as of [3 JANUARY 2024]–
.
___*aka*___
“IMAGE POINT”
.
.
-in ‘geo-metrical optics’, a ‘focus’ is a point where ‘light rays’ originating from a point on the object ‘converge’-
.
Although the focus is conceptually a point, physically the focus has a spatial extent, called the ‘blur circle’
This non-ideal focusing may be caused by aberrations of the imaging optics.
In the absence of significant aberrations, the smallest possible blur circle is the Airy disc, which is caused by diffraction from the optical system’s aperture.
Aberrations tend worsen as the aperture diameter increases, while the Airy circle is smallest for large apertures.
An image, or image point or region, is in focus if light from object points is converged almost as much as possible in the image, and out of focus if light is not well converged.
The border between these is sometimes defined using a “circle of confusion” criterion.
A principal focus or focal point is a special focus:
For a lens, or a spherical or parabolic mirror, it is a point onto which collimated light parallel to the axis is focused.
Since light can pass through a lens in either direction, a lens has two focal points โ one on each side.
The distance in air from the lens or mirror’s principal plane to the focus is called the focal length.
Elliptical mirrors have two focal points:
light that passes through one of these before striking the mirror is reflected such that it passes through the other.
The focus of a hyperbolic mirror is either of two points which have the property that light from one is reflected as if it came from the other.
Diverging (negative) lenses and convex mirrors do not focus a collimated beam to a point.
Instead, the focus is the point from which the light appears to be emanating, after it travels through the lens or reflects from the mirror.
A convex parabolic mirror will reflect a beam of collimated light to make it appear as if it were radiating from the focal point,
or conversely, reflect rays directed toward the focus as a collimated beam.
A convex elliptical mirror will reflect light directed towards one focus as if it were radiating from the other focus, both of which are behind the mirror.
A convex hyperbolic mirror will reflect rays emanating from the focal point in front of the mirror as if they were emanating from the focal point behind the mirror.
Conversely, it can focus rays directed at the focal point that is behind the mirror towards the focal point that is in front of the mirror as in a Cassegrain telescope
.
See also
Autofocus
Cardinal point (optics)
Defocus aberration
Depth of field
Depth of focus
Far point
Focus (geometry)
Fixed focus
Bokeh
Focus stacking
Focal Plane
Manual focus
.
.
References
^ “Standard Microscopy Terminology”. University of Minnesota Characterization Facility website. Archived from the original on 2008-03-02. Retrieved 2006-04-21.
en.wikipedia.org /wiki/Focus_(optics)
Focus (optics)
Contributors to Wikimedia projects3-4 minutes 10/1/2004
(Redirected from Camera focus)
Eye focusing ideally collects all light rays from a point on an object into a corresponding point on the retina.
A demonstration of camera focus on different distances, showing a bamboo rooftop
Text on a page that is partially in focus, but mostly not in varying degrees
.
.
*๐จโ๐ฌ๐ต๏ธโโ๏ธ๐โโ๏ธ*SKETCHES*๐โโ๏ธ๐ฉโ๐ฌ๐ต๏ธโโ๏ธ*
.
๐๐|/\-*WIKI-LINK*-/\|๐๐
.
.
๐๐๐โ*-FOTOGRAFIA-* โ ๐๐๐
.
.
๐๐๐๐๐ค๐๐ค๐๐ค๐๐คโค๏ธ๐๐๐งกโฃ๏ธ๐๐๐โฃ๏ธ๐งก๐๐โค๏ธ๐ค๐๐ค๐๐ค๐๐ค๐๐๐๐
.
.
*๐โจ *TABLE OF CONTENTS* โจ๐ท*
.
.
๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ*we won the war* ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ๐ฅ