-valine-

.

C5H11NO2

.

(symbol Val or V)

.

*’valine’ is an ‘α-amino acid’ that is used in the ‘bio-synthesis’ of ‘proteins’*

.

It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid.

It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. It is encoded by all codons starting with GU (GUU, GUC, GUA, and GUG).

History and etymology[edit]
Valine was first isolated from casein in 1901 by Hermann Emil Fischer.[5] The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of the acid in the roots of the plant.[6][7]

Nomenclature[edit]
According to IUPAC, carbon atoms forming valine are numbered sequentially starting from 1 denoting the carboxyl carbon, whereas 4 and 4′ denote the two terminal methyl carbons.[8]

Metabolism[edit]
Source and biosynthesis[edit]
Valine, like other branched-chain amino acids, is synthesized by plants, but not by animals.[9] It is therefore an essential amino acid in animals, and needs to be present in the diet. Adult humans require about 24 mg/kg body weight daily.[10] It is synthesized in plants and bacteria via several steps starting from pyruvic acid. The initial part of the pathway also leads to leucine. The intermediate α-ketoisovalerate undergoes reductive amination with glutamate. Enzymes involved in this biosynthesis include:[11]

Acetolactate synthase (also known as acetohydroxy acid synthase)
Acetohydroxy acid isomeroreductase
Dihydroxyacid dehydratase
Valine aminotransferase
Degradation[edit]
Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain α-ketoacid dehydrogenase complex.[12] This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle.

Synthesis[edit]
Racemic valine can be synthesized by bromination of isovaleric acid followed by amination of the α-bromo derivative[13]

HO2CCH2CH(CH3)2 + Br2 → HO2CCHBrCH(CH3)2 + HBr
HO2CCHBrCH(CH3)2 + 2 NH3 → HO2CCH(NH2)CH(CH3)2 + NH4Br
Medical significance[edit]
Insulin resistance[edit]
Valine, like other branched-chain amino acids, is associated with weight loss and decreased insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans.[14] Mice fed a valine diet for one day have improved insulin sensitivity, and feeding of a valine diet for one week significantly decreases blood glucose levels.[15] In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in a rapid reversal of the adiposity and an improvement in glucose-level control.[16] The valine catabolite 3-hydroxyisobutyrate promotes insulin sensitivity in mice by stimulating fatty acid uptake into muscle and lipid reduction.[17] In humans, a protein rich diet decreases fasting blood glucose levels.[18]

Hematopoietic stem cells[edit]
Dietary valine is essential for hematopoietic stem cell (HSC) self-renewal, as demonstrated by experiments in mice.[19] Dietary valine restriction selectively depletes long-term repopulating HSC in mouse bone marrow. Successful stem cell transplantation was achieved in mice without irradiation after 3 weeks on a valine restricted diet. Long-term survival of the transplanted mice was achieved when valine was returned to the diet gradually over a 2-week period to avoid refeeding syndrome.

See also[edit]
Valinol
References[edit]
^ “Physicochemical Information”. emdmillipore. 2022. Retrieved 17 November 2022.{{cite web}}: CS1 maint: url-status (link)
^ Dawson RM, Elliott DC, Elliott WH, Jones KM, eds. (1959). Data for Biochemical Research. Oxford: Clarendon Press. ASIN B000S6TFHA. OCLC 859821178.
^ Weast RC, ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. p. C-569. ISBN 0-8493-0462-8.
^ “Nomenclature and Symbolism for Amino Acids and Peptides”. IUPAC-IUB Joint Commission on Biochemical Nomenclature. 1983. Archived from the original on 9 October 2008. Retrieved 5 March 2018.
^ “Valine”. Encyclopædia Britannica Online. Retrieved 6 December 2015.
^ “Valine”. Merriam-Webster Online Dictionary. Retrieved 6 December 2015.
^ “Valeric acid”. Merriam-Webster Online Dictionary. Retrieved 6 December 2015.
^ Jones JH, ed. (1985). Amino Acids, Peptides and Proteins. Specialist Periodical Reports. Vol. 16. London: Royal Society of Chemistry. p. 389. ISBN 978-0-85186-144-9.
^ Basuchaudhuri P (2016). Nitrogen metabolism in rice. Boca Raton, Florida: CRC Press. p. 159. ISBN 978-1-4987-4668-7. OCLC 945482059.
^ Institute of Medicine (2002). “Protein and Amino Acids”. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. pp. 589–768. doi:10.17226/10490. ISBN 978-0-309-08537-3.
^ Lehninger, Albert L.; Nelson, David L.; Cox, Michael M. (2000). Principles of Biochemistry (3rd ed.). New York: W. H. Freeman. ISBN 1-57259-153-6..
^ Mathews CK (2000). Biochemistry. Van Holde, K. E., Ahern, Kevin G. (3rd ed.). San Francisco, Calif.: Benjamin Cummings. p. 776. ISBN 978-0-8053-3066-3. OCLC 42290721.
^ Marvel CS (1940). “dl-Valine”. Organic Syntheses. 20: 106.; Collective Volume, vol. 3, p. 848.
^ Lynch CJ, Adams SH (December 2014). “Branched-chain amino acids in metabolic signalling and insulin resistance”. Nature Reviews. Endocrinology. 10 (12): 723–36. doi:10.1038/nrendo.2014.171. PMC 4424797. PMID 25287287.
^ Xiao F, Yu J, Guo Y, Deng J, Li K, Du Y, et al. (June 2014). “Effects of individual branched-chain amino acids on insulin sensitivity and glucose metabolism in mice”. Metabolism. 63 (6): 841–50. doi:10.1016/j.metabol.2014.03.006. PMID 24684822.
^ Cummings NE, Williams EM, Kasza I, Konon EN, Schaid MD, Schmidt BA, et al. (February 2018). “Restoration of metabolic health by increased amino acid intake”. The Journal of Physiology. 596 (4): 623–645. doi:10.1113/JP275075. PMC 5813603. PMID 29266268.
^ Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. (April 2016). “A branched-chain amino acid metabolite drives vascular fatty acid transport and limits insulin resistance”. Nature Medicine. 22 (4): 421–6. doi:10.1038/nm.4057. PMC 4949205. PMID 26950361.
^ Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, Schmidt BA, et al. (July 2016). “Branch-Chain Amino Acids Improves Metabolic Health”. Cell Reports. 16 (2): 520–530. doi:10.1016/j.celrep.2016.05.092. PMC 4947548. PMID 27346343.
^ Taya Y, Ota Y, Wilkinson AC, Kanazawa A, Watarai H, Kasai M, et al. (December 2016). “Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation”. Science. 354 (6316): 1152–1155. Bibcode:2016Sci…354.1152T. doi:10.1126/science.aag3145. PMID 27934766. S2CID 45815137.
External links[edit]
Valine MS Spectrum
Isoleucine and valine biosynthesis
Valine’s relationship to prions

en.wikipedia.org /wiki/Valine
Valine
Contributors to Wikimedia projects8-10 minutes 7/22/2002
DOI: 10.17226/10490, Show Details
Valine
L-valine-2D-skeletal.png

Skeletal formula of neutral valine

Valine at 7.4 pH.png

Zwitterionic valine

Valine-from-xtal-3D-bs-17.png

Ball-and-stick model

Valine-from-xtal-3D-sf.png

Space-filling model

Names
IUPAC name
Valine

Other names
2-Amino-3-methylbutanoic acid

Identifiers
CAS Number

L: 72-18-4 check
D/L: 516-06-3 check
D: 640-68-6 check
3D model (JSmol)

L: Interactive image
L Zwitterion: Interactive image
ChEBI
L: CHEBI:16414 check
ChEMBL
L: ChEMBL43068 check
ChemSpider
L: 6050 check
D/L: 1148 check
D: 64635 check
DrugBank
L: DB00161 check
ECHA InfoCard 100.000.703 Edit this at Wikidata
EC Number
L: 200-773-6
IUPHAR/BPS

L: 4794
KEGG
L: D00039 check
PubChem CID

L: 6287
D/L: 1182
D: 71563
UNII
L: HG18B9YRS7 check
D/L: 4CA13A832H check
D: Y14I1443UR check
CompTox Dashboard (EPA)

L: DTXSID40883233 Edit this at Wikidata
show

InChI

show

SMILES

Properties[3]
Chemical formula

C5H11NO2
Molar mass 117.148 g·mol−1
Density 1.316 g/cm3
Melting point 298 °C (568 °F; 571 K) (decomposition)
Solubility in water

soluble, 85 g/l [1]
Acidity (pKa) 2.32 (carboxyl), 9.62 (amino)[2]
Magnetic susceptibility (χ)

-74.3·10−6 cm3/mol
Supplementary data page
Valine (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

.

.

*👨‍🔬🕵️‍♀️🙇‍♀️*SKETCHES*🙇‍♂️👩‍🔬🕵️‍♂️*

.

📚📖|/\-*WIKI-LINK*-/\|📖📚

.

.

👈👈👈☜*“THE 9 ESSENTIAL AMINO ACIDS”* ☞ 👉👉👉

.

.

💕💝💖💓🖤💙🖤💙🖤💙🖤❤️💚💛🧡❣️💞💔💘❣️🧡💛💚❤️🖤💜🖤💙🖤💙🖤💗💖💝💘

.

.

*🌈✨ *TABLE OF CONTENTS* ✨🌷*

.

.

🔥🔥🔥🔥🔥🔥*we won the war* 🔥🔥🔥🔥🔥🔥